2,241 research outputs found

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    Modelling and simulations of a narrow track tilting vehicle

    Get PDF
    Narrow track tilting vehicle is a new category of vehicle that combines the dynamical abilities of a passenger car with a motorcycle. In the presence of overturning moments during cornering, an accurate assessment of the lateral dynamics plays an important role to improve their stability and handling. In order to stabilise or control the narrow tilting vehicle, the demand tilt angle can be calculated from the vehicle’s lateral acceleration and controlled by either steering input of the vehicle or using additional titling actuator to reach this desired angle. The aim of this article is to present a new approach for developing the lateral dynamics model of a narrow track tilting vehicle. First, this approach utilises the well-known geometry ‘bicycle model’ and parameter estimation methods. Second, by using a tuning method, the unknown and uncertainties are taken into account and regulated through an optimisation procedure to minimise the model biases in order to improve the modelling accuracy. Therefore, the optimised model can be used as a platform to develop the vehicle control strategy. Numerical simulations have been performed in a comparison with the experimental data to validate the model accuracy

    Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier

    Get PDF
    Ice shelves are critical features in the debate about West Antarctic ice sheet change and sea level rise, both because they limit ice discharge and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice shelf front has remained stable for the past six decades, past periods of ice shelf collapse have been inferred from relict seabed "corrugations" (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice shelf extent within the last 11 kyr, implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different from today. The alternative, that corrugations were not formed in open water, would question ice shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation and suggest periodic grounding of ice shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf nor glacier retreat and is consistent with a "stable" grounding-line configuration throughout the Holocene

    Parametric optimization study of a lithium-ion cell

    Get PDF
    Lithium-ion cell technology is well known for its high power and energy density in the automotive application. This paper presents development of a 1D electrochemical model which can be used to predict 18650 lithium-ion cell performance under different operating conditions. COMSOL Multiphysics 5.2a software has been utilized to develop the electrochemical model to predict the cell behaviour under various discharge rates. This tool uses the finite element method (FEM) to solve the conservation equations of charge and species in solid and electrolyte phase. And Butler-Volmer equation for reaction rates of lithium insertion and extraction. In an event that the electrochemical parameters of the cell are not known, determination of these parameters by measurements or experiments is a difficult and challenging task. An attempt has been made in this paper to estimate unknown cell parameters by two methods, first by performing a parametric study on cell parameters such as particle radius, diffusion coefficient, porosity etc. within a known range from literature studies and analyse the sensitivity of these parameters on the model results. Secondly, to improve the accuracy of the simulation results, COMSOL optimization module is used and the simulation results are validated against the experimental data. Apart from the discharge profiles, the proposed model can also be used to study the time dependent distribution of lithium-ion concentration, electrolyte concentration, lithium diffusivity and ionic conductivity in the cell

    Nonlinearity compensation based tilting controller for electric narrow tilting vehicles

    Get PDF
    Considering the traffic congestion and low energy consumption, small electric four-wheeled narrow tilting vehicles (NTV) are expected to be the new generation of city cars. In order to maintain lateral stability, the NTVs should have to lean into corners like two-wheeled vehicles. This is a challenge to keep a NTV stable during turning at different speeds. This paper aims to design a nonlinearity compensation based tilting controller for the direct tilting mechanism based NTVs. The controller adaptively compensates the nonlinearities of NTV roll dynamics in different vehicle speeds without the accurate vehicle models and, consequently, improve its robustness to rider’s behaviour. By utilising the proposed nonlinear tilting control system, both new riders and experienced riders can drive the NTVs easily with improved tilting stability. Simulations have been conducted to validate the applicability and robustness of the proposed control approach

    Powertrain modelling for engine stop-start dynamics and control of micro/mild hybrid construction machines

    Get PDF
    Engine stop-start control is considered as the key technology for micro/mild hybridisation of vehicles and machines. To utilize this concept, especially for construction machines, the engine is desired to be started in such a way that the operator discomfort can be minimized. To address this issue, this paper aims to develop a simple powertrain modelling approach for engine stop-start dynamic analysis and an advanced engine start control scheme newly applicable for micro/mild hybrid construction machines. First, a powertrain model of a generic construction machine is mathematically developed in a general form which allows to investigate the transient responses of the system during the engine cranking process. Second, a simple parameterisation procedure with a minimum set of data required to characterise the dynamic model is presented. Third, a model- based adaptive controller is designed for the starter to crank the engine quickly and smoothly without the need of fuel injection while the critical problems of machine noise, vibration and harshness can be eliminated. Finally, the advantages and effectiveness of the proposed modelling and control approaches have been validated through numerical simulations. The results imply that with the limited data set for training, the developed model works better than a high fidelity model built in AMESim while the adaptive controller can guarantee the desired cranking performance

    Challenges of micro/mild hybridisation for construction machinery and applicability in UK

    Get PDF
    In recent years, micro/mild hybridisation (MMH) is known as a feasible solution for powertrain development with high fuel efficiency, less energy use and emission and, especially, low cost and simple installation. This paper focuses on the challenges of MMH for construction machines and then, pays attention to its applicability to UK construction machinery. First, hybrid electric configurations are briefly reviewed; and technological challenges towards MMH in construction sector are clearly stated. Second, the current development of construction machinery in UK is analysed to point out the potential for MMH implementation. Thousands of machines manufactured in UK have been sampled for the further study. Third, a methodology for big data capturing, compression and mining is provided for a capable of managing and analysing effectively performances of various construction machine types. By using this method, 96% of data memory can be reduced to store the huge machine data without lacking the necessary information. Forth, an advanced decision tool is built using a fuzzy cognitive map based on the big data mining and knowledge from experts to enables users to define a target machine for MMH utilization. The numerical study with this tool on the sampled machines has been done and finally realized that one class of heavy excavators is the most suitable to apply MMH technology

    Powertrain modelling and engine start control of construction machines

    Get PDF
    This paper aims to develop an engine start control approach for a micro/mild hybrid machine for a capable of cranking the engine without injection. First, the powertrain is physically modelled using a co-simulation platform. Second, experiment data of the traditional machine is acquired to optimize the model. Third, a model-based adaptive controller is designed for the starter to crank the engine quickly and smoothly to minimize the operator discomfort. The effectiveness of the proposed approach is validated through numerical simulations with the established model

    A study into different cell-level cooling strategies for cylindrical lithium-ion cells in automotive applications

    Get PDF
    Previous research has identified that the ageing rate and performance of lithium-ion cells is negatively influenced by unfavourable cell thermal conditions, specifically, high ambient temperatures and large in-cell temperature gradients. In this paper, the effectiveness of different cell cooling strategies on reducing the in-cell temperature gradient within cylindrical cells is analysed through the development of a 2-D transient bulk layer thermal model displaying anisotropic thermal conductivity. The model is validated against experimental temperature measurements in which the peak error of the simulation was found to be 2% and 5% for the experimental test drive cycle and constant 1C discharge respectively. Results indicate that radial cooling with air or singular tab cooling with liquid may be inadequate in limiting cell temperature gradients to below 5 ℃ for HEV type 32113 cells when subject to 4 loops of the US06 drive cycle

    The wear resistance improvement of fibre reinforced polymer composite gears

    Get PDF
    This paper presents experimental investigations into the wear performance of non-reinforced POM (Polyoxymethylene) and 28% GFR POM (glass fibre reinforced POM) gear pairs; polymer running against polymer is a little studied but important system. All the gears were manufactured locally by injection moulding. The injection mould design and manufacturing process are briefly described and progress in the control of injection moulding processes for polymer and fibre reinforced polymer gears is discussed. A specifically designed polymer composite gear test rig was used for this research. Performance differences for the POM and GFR POM gears are observed, notably their loading capacity and failure modes. Both POM and GFR POM gear pairs, showed a clear wear transition torque for a given running speed. Above the transition torque the wear rate accelerated rapidly causing thermal failure, while below the transition torque the gears had a very low specific wear rate. Significant performance enhancements were seen for the GFR POM gears, with an increase of around 50% in load carrying capacity when compared to the non-reinforced POM gears. The wear mechanisms are briefly discussed, noting that most data available for polymer gear design is not representative of these polymer against polymer pairings
    • …
    corecore